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Abstract 

 
I propose an attention-based vision policy that can play 
Atari games based on pixel input. The policy encodes pixels 
by firstly using convolution layers and then Transformer 
Encoder, where both the fast attention and regular 
attention were tested. Experiments comparing vanilla 
convolutions, fast attention and regular attention on 4 
selected Atari games are conducted. I also compare the 
performance between full encoder layers and simplified 
layers. The conclusion is that fast attention outperforms 
regular attention in total reward and simplified encoders 
outperform full attention-MLP layers in time and total 
reward under limited experiments. 
 

1. INTRODUCTION AND RELATED WORK 
Q-learning algorithm with convolutional neural network, 
whose input is raw pixels has demonstrated success on 
several Atari games decades ago (Mnih et al., 2013). The 
neural network plays the role of both state representation 
and policy 𝜋: 𝒮 → 𝒜. Thus, the ability to identify the 
latent state from raw observations and learn the proper 
policy from state space to actions are the critical 
ingredient of the performance of different NN architecture. 
Transformers (Vaswani et al., 2017) have become SOTA 
in different areas ranging from natural language 
processing (NLP), time series prediction, to image 
generation. The success of Transformers rely on the 
trainable attention mechanism which identifies complex 
depencies between elements of each input sequence. 
Despite the power that attention mechanism processes 
complex information, attention mechanism is expensive 
for the fact that it scales quadratically with the length L of 
the input sequence. Performers ( Choromanski et al., 
2020) improve the regular attention with Fast Attention 
Via positive Orthogonal Random features (FAVOR+) 
mechanism, which is provably accurate and only takes 
linear space and time complexity. For this project, I use 
Deep Q Networks (DQN) with different NN models to 
train agents directly from raw pixels and compare the 
performance. 

2. METHOD 

2.1. TRANSFORMER ENCODER 

Transformers were proposed originally to process sets 
instead of sequence since it produces the same output if 
the input is permuted. To apply Transformers to 
sequences, a positional encoding is added. Pre-Layer 
Normalization (Xiong et al., 2020) is used(Figure 1), 
which is a version of the Transformer that applies Layer 
Normalization first in each residual block. Pre-LN is more 
stable for training Transformers, which supports better 
gradient flow and removes the necessity of a warm-up 
stage. 
For the implementation, the Feed Forward block is two 
fully connected layers with GELU activation. The Feed 
Forward block introduces much more parameters while 
the gain is uncertain. Therefore, simplified version of 
Transformer Encoder with simply attention blocks is 
tested against the full Transformer Encoder. 

 
Figure 1 One Transformer Encoder layer 
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2.2. FAVOR+ MECHANISM 

Model-free Deep Reinforcement Learning suffers from 
sample inefficiency. Model requires millions of training 
steps to learn proper policies from environments. 
Therefore, models with high complexity could fail to learn 
policies with limited resources. The canonical 
Transformer (Vaswani et al., 2017) uses dot-product 
attention, which takes 𝑄,𝐾, 𝑉 ∈ ℝ!×#	as input where L is 
the length of the input sequence and d is the dimension the 
latent representation. The bidirectional dot-product 
attention has the form: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = 𝑫%𝟏𝑨𝑽, 
Where 𝑨 = exp(𝑸𝑲

!

√#
), 𝑫 = diag(𝑨𝟏!). The time and 

space complexity are 𝑂(𝐿*𝑑) and 𝑂(𝐿* + 𝐿𝑑) 
respectively. 
FAVOR+ (Choromanski et al., 2020) uses a random 
feature map 𝜙:ℝ# → ℝ+

,  (for 𝑟 > 0) such that the kernel 
K:	ℝ# ×ℝ# → ℝ+ has: 

K(𝒙, 𝒚) = 𝔼[𝜙(𝒙)-𝜙(𝒚)] 
The random feature map 𝜙 leads to the more efficient 
attention mechanism: 

𝐴𝑡𝑡𝑒𝑛𝑡𝚤𝑜𝑛S (𝑸,𝑲, 𝑽) = 𝑫%𝟏T (𝑸.((𝑲.)-𝑽)) 
Where 𝑫U = diag(𝑸.((𝑲.)-𝟏!)). 
This attention mechanism has time and space complexity 
𝑂(𝐿𝑟𝑑) and 𝑂(𝐿𝑟 + 𝐿𝑑 + 𝑟𝑑) respectively (see also 
Figure 3). 

 
Figure 3 Approximation of the regular attention mechanism 
𝐀𝐕(before 𝐃!𝟏-renormalization via (random) feature 

maps.(Choromanski et al., 2020) 
 
As for experiments, models with regular and fast attention 
are tested against each other.  

2.3. LIGHT ATTENTION VISION MODULE 

As Figure 2 shows, the Atari games’ pixel observations 
are firstly resized to 84 × 84 pixels and grayscaled. Then 
3 consecutive frames are stacked at a new dimension. The 
stacked frames then become the input of the Convolution 
module, which consists of 3 sequential Conv2D layers. 
The feature map after convolutions is of the shape 
(𝐻,𝑊, 𝐶), which is reshaped to (𝐻 ×𝑊,𝐶) before fed 
into Transformer Encoder. As for the proposed model, the 
feature map extracted is of shape 7 × 7 × 64, which is 
reshape to 49 × 64 and passed through one linear layer to 
obtain sequence of features with embedding size, which is 
set to 64. The feature embeddings are then added with 
positional embedding to be fed into Transformer Encoder, 
which is a sequential of Attention blocks. The processed 
features from each Attention blocks have same shape as 
the input features. Here I used multi head self-attention 
mechanism, the input feature is projected onto each head 
dimension, which is the feature dimension divided by total 
number of heads. In the following experiments, the 
number of heads is 8, the number of layers is 2. The output 

Figure 2 Overview of the Light Attention Vision model architecture 
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from Transformer Encoder is flattened and forward 
through MLP, which contains one hidden layer of size 256 
and one linear layer to get estimated Q for each action. 
Dropout with 0.1 rate is applied in every block. 

3. EXPERIMENTS AND RESULTS 
To observe the performance of light attention vision 
module, experiments on 4 Atari games, which are 
Breakout, Pong, Asteroids and Tennis, are conducted. 
Further, to investigate the gain from attention vision 
module and Feed Forward blocks, vanilla Convolution 
model and full Transformer Encoder are tested. Moreover, 
Transformer Encoder with regular dot-product attention 
mechanism is also tested against fast attention mechanism 
mentioned in 2.2 FAVOR+ MECHANISM. The same 
parameters are applied for different models for fair 
comparision. The parameters are summarized in Table 1. 
All experiments were conducted on Google Colab with 
GPU backend and monitored with tensorboard. To better 
visualize the result, all curves are smoothed by smoothing 
factor of 0.9. 

 

 
Figure 4 BreakoutNoFrameskip-v4 Episode reward. From top to 

down, the deep blue line is the light attention vision module 
(with fast attention), gray line is vanilla Convolution, the orange 
line is full Transformer Encoder with fast attention and the dark 
red line is full Transformer Encoder with regular (dot-product) 

attention. 
 

 
Figure 5 PongNoFrameskip-v4 Episode reward. From top to 

down, the orange line is the light attention vision module (with 
fast attention), light blue line is vanilla Convolution, the pink line 
is full Transformer Encoder with fast attention and the green line 
is full Transformer Encoder with regular (dot-product) attention. 

 

 
Figure 6 AsteroidsNoFrameskip-v4 Episode reward. From top to 

down, the green line is the light attention vision module (with 
fast attention), gray line is full Transformer Encoder with regular 

(dot-product) attention, the red line is vanilla Convolution and 
the blue line is full Transformer Encoder with fast attention. 

 

 
Figure 7 TennisNoFrameskip-v4 average reward. From top to 
down, the green line is the light attention vision module (with 
fast attention), gray line is full Transformer Encoder with fast 
attention, the blue line is vanilla Convolution and the dark red 

line is full Transformer Encoder with regular (dot-product) 
attention. 

 
From the episode reward curves the observation is that the 
light attention vision module performs similarly with 
vanilla Convolution while being more stable and reaching 
slightly higher average episode reward but requires longer 
forward time. The full Transformer Encoder with fast 
attention and regular attention perform similarly with each 
other while the fast attention version performs better. And 
both of the full Encoders need more training steps.  
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Table 1 Parameters 
Parameter Value 

Light Attention Vision 
Embedding dim 64 
Hidden dim 128 
Num of heads 8 
Num of Encoder layers 2 
MLP Hidden dim 256 
Batch size 256 
Optimizer Adam 
Learning rate 3E-04 

Q-Learning 
Boltzmann temperature 0.015 
Soft update tau 1 
Reward N step 5 
Reward N step gamma 0.99 
Train every n steps 4 
Update every n steps 1E+04 

Prioritized Replay Buffer 
capacity 1E+06 
alpha 0.6 
Warmup 5E+04 
 

4. DISCUSSION 
When deciding which reinforcement learning algorithm to 
choose, I first used PPO and it performed well with vanilla 
Convolution blocks but failed to learn with full 
Transformer Encoder. I get confused and guessed that my 
code for light attention vision module contains error so I 
tried mnist classification to observe if the model is 
learning from the gradient, and found that the loss drops 
gradually. Then I tried DQN, which gives better results 
and starts to learn. The failure of PPO could be resulted 
from limited trials for hyperparameters and improper 
value for these parameters, for instance, the capacity of 
replay buffer.  
It is also observed that better performance is obtained by 
using fast attention instead of regular attention. And the 
MLP block inside the Transformer Encoder layer 
increases the total trainable parameters while not provides 
enough performance gains under experiments with limited 
resources. 
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